Integrated Multisensory Robotic Hand System for Deformable Object Manipulation

نویسندگان

  • Fouad F. Khalil
  • Pierre Payeur
  • Ana-Maria Cretu
چکیده

Designing a dexterous robotic hand able to interact intelligently with deformable objects constitutes a challenging area of research where many issues are yet to be solved. The complexity of such interactions requires the assistance of intelligent multisensory robotic systems that combine measurements collected from different sensors in order to accurately plan for the forces to be applied on the deformable object. This paper presents the development of a real-time multisensory robotic hand platform that incorporates live measurements of its internal position, velocity and force parameters along with data from external tactile sensors and a stereoscopic vision device. The resulting prototype of the integrated multisensory system is validated experimentally by the computation of deformable object models in which the measurements are merged. A formal dynamic model is discussed and a neural network representation model is presented. The results demonstrate the performance and suitability of the multisensory platform for the development of enhanced robotic hand capabilities when manipulating deformable objects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dexterous Robotic Manipulation of Deformable Objects with Multi-Sensory Feedback - a Review

Designing autonomous robotic systems able to manipulate deformable objects without human intervention constitutes a challenging area of research. The complexity of interactions between a robot manipulator and a deformable object originates from a wide range of deformation characteristics that have an impact on varying degrees of freedom. Such sophisticated interaction can only take place with t...

متن کامل

Enabling Motion Planning and Execution for Tasks Involving Deformation and Uncertainty by CALDER PHILLIPS-GRAFFLIN

A number of outstanding problems in robotic motion and manipulation involve tasks where degrees of freedom (DoF), be they part of the robot, an object being manipulated, or the surrounding environment, cannot be accurately controlled by the actuators of the robot alone. Rather, they are also controlled by physical properties or interactions – contact, robot dynamics, actuator behavior – that ar...

متن کامل

Characterization of Textile Grasping Experiments

Grasping highly deformable objects, like textiles, is an emerging area of research that involves both perception and manipulation abilities. As new techniques appear, it becomes essential to design strategies to compare them. However, this is not an easy task, since the large state-space of textile objects explodes when coupled with the variability of grippers, robotic hands and robot arms perf...

متن کامل

Picking up a soft 3D object by "feeling" the grip

This paper describes a strategy for a robotic hand to pick up deformable 3D objects on a table. Inspired by human hand behavior, the robotic hand employs two rigid fingers to first squeeze such an object until it “feels” the object to be liftable. Such “feeling” is provided by a (virtual) liftability test that is repeatedly conducted during the squeeze. Passing of the test then triggers a lifti...

متن کامل

Grasp analysis of a four-fingered robotic hand based on Matlab simmechanics

The structure of the human hand is a complex design comprising of various bones, joints, tendons, and muscles functioning together in order to produce the desired motion. It becomes a challenging task to develop a robotic hand replicating the capabilities of the human hand. In this paper, the analysis of the four-fingered robotic hand is carried out where the tendon wires and a spring return me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010